Industrial Internet Now
Subscribe
Contribute
Loading...
×

Making the shift from smart factories to living services

The Industrial Internet of Things (IIoT) is transforming the way manufacturers approach matters such as resource allocation, production processes and the workforce. In time, companies will gain even more benefits from the highly automated, end-to-end production integration of intelligent products and services made possible by the IIoT. Edy Liongosari, chief research scientist and managing director at Accenture Labs, talks about critical trends and uncovers advantages that have yet to be widely discussed.  

Operational safety and efficiency are two of the most clear-cut advantages the IIoT brings from the outset. Edy Liongosari believes those are the obvious ones because the return on investment of such initiatives is much simpler to calculate and measure. “When we talk about new products and services, however, the business cases are typically built with a lot of assumptions. Therefore, the confidence on those business cases is lower. But that’s exactly where the big opportunities are.”

Liongosari says that safety and efficiency are just part of the first of four waves of IIoT adoption. The next wave – which he believes has greater transformational impact – consists of the creation of smart products and smart services. “It’s vital to consider how you are going to be able to use the physical products that you have and to think about the product as a way – as a channel if you will – to sell and deliver what we call living services,” he shares.

Living services are contextually aware digital services designed to anticipate and respond to customer needs in real-time through the channel that you have. Liongosari mentions one example that emerged from the IOT Solutions World Congress in 2016: Bigbelly is a connected trash bin that knows exactly when to compact waste and when to unload it. He also cites Claas, the German agricultural machinery manufacturer that has partnered with the free field mapping service 365FarmNet. Together the two use their respective fields of expertise to bring about precision farming, in turn driving the future of agriculture.

A universal standard

In a manufacturing setting, thanks to the convergence of Operational Technology and Information Technology, manufacturing equipment is increasingly connected with larger enterprise systems – from manufacturing execution systems, production management, logistics and enterprise resource planning systems – to allow manufacturers to plan, monitor and adjust their production in real-time.

Liongosari, however, is of the opinion that a universal standard to allow equipment from multiple vendors to communicate and collaborate will not become the norm, at least not in the short term. “It’s primarily because of the diversity of the use cases, environmental conditions, and laws and regulations that fall under the IIoT. For example, the diversity of IIoT infrastructure requirements such as energy consumption, computing and bandwidth availability, mobility and security makes it very hard to have just one sole industry standard,” he explains. However, there are plenty of efforts to make specific IIoT standards to interoperate – to the extent it can be reasonably done – through a variety of testbeds.

“You can see the borders between various industries slowly disappearing because a lot of newcomers are coming to your game very, very quickly. The possibility is really big.”

Critical trends

According to Liongosari, there are four key trends impacting the IIoT. The first deals with automation and artificial intelligence (AI). Our ability to automate or augment work processes using machine intelligence can now be done at the unprecedented scale and precision through the use of AI techniques.

In an automotive manufacturing plant, for example, cameras can be used to learn and detect refined defects in a product. Rather than wait for a batch run to be completed before defects are found, those can be detected in real-time. “Sometimes you don’t realize the presence of small defects until much later on, resulting in a significant loss of work,” he explains, adding that in many cases, existing surveillance cameras can be repurposed for defect prevention in quality assurance by embedding some intelligence in them. “This is what we call the next generation of automation.”

The second key trend is about human and machine interaction. “The industrial workforce itself is changing significantly,” he says. A human workforce is augmented with wearable computing capabilities to significantly increase their efficiency as well as agility, allowing them to take on new tasks at the speed like never before. In addition, collaborative robots – or cobots – that have been used for hospitality and concierge services, are now being expanded to perform simple and repetitive tasks on the factory floor, such as those in Amazon’s warehouses.

The third comprises platforms and ecosystems. “One critical element of smart products is their ability to sense, configure, and respond based on the needs of the customers,” states Liongosari. “It’s not just selling your products and services but the ability to turn the product itself into a platform – just like in Android or iOS – to allow others to build upon it and use it to build a set of rich and interconnected living services provided by a lush ecosystem of business partners.”

The last key trend is cybersecurity, which is rising in importance due to vulnerabilities to attacks, espionage and data breaches brought about by increased connectivity and data sharing. Liongosari brings up the denial of service attack by a Mirai-based botnet that affected IoT devices in September 2016 as a reminder of the importance of cybersecurity in this highly interconnected world.

“In addition to security, privacy and data ethics are increasingly critical especially given the vast amount of customers’ and employees’ data that companies now have access to. In some cases, the concept of data ownership in an organization is being seriously questioned as ownership implies that the organization can do whatever it wants with the data,” says Liongosari.

The use of such data is highly dependent on many factors beyond data privacy laws and regulations. For example, organizations need to factor in the original intention of data when it was provided or captured, ethical interpretation of the analyzed data, and how the results are being used and shared ethically. “How are you going to interpret data uniformly across different countries, laws, interpretations and usages? The meaning of data ownership may change or the term may completely disappear.”

Seizing the opportunity

In order for manufacturers to chart a path of growth through the IIoT, Liongosari offers sound advice. “You can start small in a sense that you can focus on operational efficiency – that there is a specific return on investment that you drive toward. But at the same time, you need to think big because the opportunity is a considerable one,” he says.

“You can see the borders between various industries slowly disappearing because a lot of newcomers are coming to your game very, very quickly. The possibility is really big.” To seize the opportunities of the Industrial Internet of Things, Liongosari sums it up with this mantra: “Start small, think big, and iterate fast.”

Edy Liongosari works as chief research scientist and managing director at Accenture Labs

Image credit: Zapp2Photo / Shutterstock.com

Interview w/ Edy Liongosari

Join the conversation!

Your email address will not be published.

A wider view gives more accurate results

Taking a step back and analyzing processes from a larger perspective might take you to surprising places, such as a dinner table in a Chinese household, says Petri Asikainen, Director, Product Development at Konecranes. According to Asikainen, to get the most out of your production processes, having a wide view of the process in hand is crucial. By seeing the processes as a whole, monitoring them as widely as is possible and by adjusting the production facilities’ metrics accordingly, noticeable boosts can be gained in the total output.

Industrial monitoring is going through big changes. From the variety of ways in which equipment in an industrial setting can be monitored, to the new possibilities in remote monitoring and -operation, operators in facilities have gained new ways to operate efficiently. A great example of this can be found in the context of waste processing.

“We were asked to optimize the operating activities in a certain waste management facility. We noticed that once we installed a Remote Operating Station for the crane operators in the power plant’s main operating room, suddenly the old local operating room over the waste bunker wasn’t the number one choice for working anymore,” Asikainen says.

Having all the personnel operate the plant from one location allows for better communication between the operators in charge of different parts of the facility. It also offers noticeable savings for companies, as there’s no need to build additional local operating rooms just to be physically present for the operation of the cranes anymore.

Monitoring everything there is to be monitored

In many industrial operations, the crane is in the center of the production process. This unique position allows for the possibility to gain deep insight of the production process.

“The entire material flow in the facility might be dependent on the crane, and this gives us plenty of opportunities to create different types of insights for customer’s needs. One example, found in the context of the paper industry, is that we can better identify where reject appears. This is valuable information for the manufacturer, and if it can help to improve the material efficiency of the manufacturers process by half a percent – it might already cover the cost of the crane data gathering capability and analysis work with extremely short pay-back time,” Asikainen explains.

The cranes’ movement patterns can also be tracked in the production facilities, so that the biggest bottle necks can be found. This tracking also helps map the actual material flow. If a load is moved from one place to another several times back and forth, the whole process slows down.

“Existing manufacturing facilities continuously face the need to respond to the global race for lowering costs and improving efficiency. A thorough analysis of the material flow can help improve production. Through it, we can find out what kind of crane setup would suit the client’s process, a result which is based on the actual measured data. When one is considering rebuilding an existing facility, this kind of efficiency analysis is a good tool to define the profitable targets to invest in.”

As to why Asikainen ended up practically monitoring how a household dines, he uses it as an example of how processes can be optimized in various, wider ways.

“We discovered that the loaders used in the waste facilities in China were continuously moving heavier loads compared to their European counterparts. One reason for this was that the households use a large amount of oil in cooking. The residue ends up in the trash and then to the waste processing facilities. This has an effect on the raw material, making it finer and increasing its energy density,” Asikainen explains.

This has a direct effect on how the whole process is set up and the crane is optimized. When the operators have a better view on the type of waste coming in to the facility, the effect that the differences in waste have on the energy output can be taken into account better.

Benefits of monitoring

When asked about the benefits the increased monitoring brings for companies, Asikainen brings up the similarities between lift trucks and cars. Both have similar concerns, such as tire leaks. For both, leaks can be monitored and fixed faster through monitoring. Early reaction to low tire pressure decreases extensive wearing and improves safety.

The operability of cranes develops in similar trends as cars – functionalities which 15 years ago could have been sold only to extreme needs, are now common even in the most value-focused cranes.

“Snag prevention is an example of this. It automatically stops crane movement if a hook, a sling or a load accidentally gets caught on something. Having real-time information on both the environment in which the crane is operating as well as the loads that they are moving, has made it possible to halt the crane if something gets caught in the way”, Asikainen says.

Hook centering is also an effective technology to improve efficiency and safety. If you lift a load and the hook isn’t centered, the load starts to swing as it’s lifted off the ground. The hook centering positions the crane above the hook, eliminating a possible human error. The hook is where it is supposed to be before lifting the load.

Maintenance by demand

Another way in which the increased monitoring can be utilized by companies is by making maintenance more effective. When you have sensors measuring thousands of points of data, you can efficiently both prevent halts as well as optimize maintenances routes.

“With the increased amount of information, technicians can focus their attention to issues needing extra care. The crew can also receive info on which manuals, tools and parts they must have with them beforehand,” Asikainen says.

All in all, maximizing the improvement through monitoring is dependent on two things – both the gathered data and the insights. Through having both, companies can achieve a more holistic view of their process, one which is based more on the actualities of the operating environment, and not just on subjective, professional guesses. This makes the whole manufacturing process more reliable and transparent.

Petri Asikainen works as Director, Product Development at Konecranes.

Interview w/ Petri Asikainen

Join the conversation!

Your email address will not be published.

Industry 4.0 could move mass customization into the automotive mainstream

Customization, regardless of the product, is always a strong selling point. When introducing the modern Mini, BMW liberalized their customer’s decision-making by offering “hundreds of options to choose from both inside and outside the car,” says Eugene Smethurst, Director and Process Automation Specialist at AECOM, in The Engineer, a UK-based publication for advanced engineering professionals.

What Industry 4.0 has the potential of doing is taking the customization process one step further. Via data integration, companies will be able to seamlessly bridge the relationship between themselves, their suppliers and their customers, to offer a more immediate and modular experience.

“The term [Industry 4.0] refers to a broad coalition of new manufacturing possibilities enabled by the collection, distribution and utilization of data, as well as the seamless connections between processes enabled by the internet. Automation unlocked in this way could bring customization within the reach of even the most cost-conscious buyer,” says Smethurst.

Though customization isn’t exactly a novel innovation, Industry 4.0 introduces facets to the experience which certainly are.  “What Industry 4.0 allows is for this approach to scale up into the millions, while reining in costs and speeding up time to delivery, so that customers are not left waiting months for all of the pieces of their customized car to be brought together or to be in stock at the same time,” says Smethurst.

Read more about the level of customization and collaboration that Industry 4.0 can unlock in the automotive industry at https://www.theengineer.co.uk/guest-blog-industry-4-0-could-move-mass-customisation-into-the-automotive-mainstream/

Via The Engineer

Join the conversation!

Your email address will not be published.

The Industrial Internet Security Framework: A security framework built on cooperation

Global collaboration is essential to protect the industrial internet. “Attacks to industrial sites will not be a local affair in the industrial internet, but an international one,” says Dr. Jesus Molina, Security Consultant at Fujitsu, on the Industrial Internet Consortium blog. He was part of the team that worked on the recently published Industrial Internet Security Framework (IISF).

The framework required close cooperation from many contributors globally and it took a lot of patience and testing to get it right. According to Molina, each draft received hundreds of comments and they wanted it to be inclusive of many views, so it took years to get IISF completed. He believes the final document provides a comprehensive and balanced view on securing current and future industrial systems. He also says that the framework is a living document.

Read more about the new security framework at http://blog.iiconsortium.org/2016/09/the-industrial-internet-security-framework-a-security-framework-built-on-cooperation.html

Image credit: Maksim Kabakou / Shutterstock.com

Via Industrial Internet Consortium

Join the conversation!

Your email address will not be published.

Leading players in the IoT for the automotive industry

A key pillar of Internet of Things advancement is automotive development. Writing in the IoT Tech Expo Blog, Jon Kennard lists the key players that are pushing IoT discovery forward in the automotive industry.

In Kennard’s opinion, groups such as Tesla, Renault, Google, Jaguar Land Rover and Siemens, among others, are leading the way in terms of the connected vehicle ecosystem. “Siemens has been researching and developing autonomous vehicles for years, and their view of the movement is much more from a network and system perspective. Buses, trains – very little falls out of scope for this forward-thinking tech giant.”

Read more about companies leading the IoT for the automotive industry here http://www.iottechexpo.com/2016/09/connected-car/leading-players-iot-automotive-industry/

Via IoT Tech Expo

Join the conversation!

Your email address will not be published.